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We extend the circle theorem on the zeros of the partition function to a continuum system. We also calculate
the exact zeros of the partition function for a finite system where the probability distribution for the order
parameter is given by two asymmetric Gaussian peaks. For the temperature-driven first-order transition in the

thermodynamic limit, the locus and the angular density of zeros are given byr5e(Dc/2l )u
2
and

2pg(u)5 l @113/2(Dc/ l )2u2#, respectively, in the complexz([reiu) plane wherel is the reduced latent heat,
Dc is the discontinuity in the reduced specific heat, andz5exp(12Tc /T). @S1063-651X~96!10506-7#

PACS number~s!: 64.60.Fr, 02.30.Dk, 02.50.Cw, 05.70.Fh

One of the fascinating subjects of equilibrium statistical
mechanics is to understand how an analytic partition func-
tion acquires a singularity when the system undergoes a
phase transition. For the last three decades, the main focus
has been on the second-order transition. Only recently has a
renewed interest in the first-order phase transition begun to
emerge@1#.

Since Yang and Lee@2# first published their celebrated
papers on the theory of phase transitions and the circle theo-
rem on the zeros of the partition function, there have been
many attempts to generalize the theorem@3#. Fisher@4# ini-
tiated the study of zeros of the partition function in the com-
plex temperature plane and Jones@5# proposed a scenario for
the first-order transition for a continuum system. However,
very little is known about the distribution of zeros for the
continuum case. This is because the partition function for the
continuum system is not a polynomial, in general, and the
original proof of the circle theorem relied heavily on particu-
lar properties of the coefficients of a polynomial. Recently,
we have been able to prove the theorem in a quite different
approach@6# and this approach allows us to generalize the
theorem further to the continuum case.

We found that the circle theorem follows from a certain
mathematical relation that exists between a probability den-
sity function and the zeros of its characteristic function. In
this paper, we prove that the zeros of the partition function
can be expressed in terms of the discontinuities in the deriva-
tives of the free energy across the phase boundary if there is
a nonvanishing discontinuity in the first-order derivative, and
that the zeros lie on the unit circle if the transition is sym-
metric. We further show that there are no zeros in the single-
phase region where the probability distribution is given by a
single Gaussian peak. We also calculate the zeros of the
partition function exactly at the two phase coexistence point
where the probability distribution is given by two asymmet-
ric Gaussian peaks.

Furthermore, we find the finite-size scaling very similarly
to that of the discrete system@6#. Therefore, this result can
again be used, for a continuum system,~1! to resolve the
recent controversy over equal weight versus equal height of
the probability distribution functions@7–9# and~2! to distin-
guish the first-order transition from the second@10,6#, just as
we have done for the discrete system in Ref.@6#.

We first note that the canonical partition function can be
regarded as a moment generating function of a probability
distribution function. Take, for example, a canonical parti-
tion function Z(b) defined byZ(b)5*2`

` e2bEV(E)dE,
whereV(E) is the density of states atE, b is the inverse
temperature 1/kbT, and kb is the Boltzmann constant. We
can identify this partition function as a moment-generating
functionM(t),

M~ t ![Z~b!/Z~b0!5E
2`

`

etxf ~x!dx, ~1!

where the probability density function is given by

f ~x!5V~x/b0!e
2x YE

2`

`

V~x/b0!e
2xdx. ~2!

In the above,t512b/b0 , x5b0E, andb0 is a reference
inverse temperature around which the system fluctuates.

The characteristic function@11# for a probability density
function f (x) is defined by

f~v!5E
2`

`

eivxf ~x!dx, ~3!

where i is the imaginary unit. Iff(v) can be analytically
continued into the complexv plane,M(t)5f(2 i t ) is the
moment-generating function. Since the characteristic func-
tion always exists and its properties are well known@11#, we
will consider zeros of the characteristic function.

The logarithm off(v) is known as the second character-
istic function or cumulant generating function and denoted
by c(v). That is,

c~v!5 ln@f~v!#5(
s51

`

gs

~ iv!s

s!
. ~4!

The expansion coefficients,gs are knownsth cumulants or
semi-invariants and are calculable by the formula,
gs5]sc(v)/]( iv)su iv50 .

Sinceiv is the temperaturet andc5(s51
` gst

s/s! is the
free energy2bF(t) in the above example,g15b0^E& and
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g25b0
2^(E2^E&)2&5Cv /kb , where^E& is the internal en-

ergy andCv is the heat capacity. The higher-order cumulants
are similarly related to the higher-order derivatives of the
free energy.

We will consider zeros of the characteristic function in
the finite region only. If the density function is not a delta
function ~in which case there are no zeros in the finite re-
gion! we can always divide the density function into two
parts, taking a pointx* somewhere in the middle of the
distribution.

That is,

f ~x!5c@ f 1~x!1a f2~x!#, ~5!

where f 1(x)5 f (x)/c and f 2(x)50 for x,x* , f 1(x)50
and f 2(x)5 f (x)/ac for x>x* , c5*

2`
x
* f (x)dx, and

a5*x
*

` f (x)dx/*
2`
x
* f (x)dx.

Consider the zeros of characteristic function

f~v!5f1~v!1af2~v!. ~6!

If c1(v) andc2(v), the cumulant generating functions of
f1(v) and af2(v) exist except at isolated zeros, then we
can write Eq.~6! in terms of these cumulant generating func-
tions as

f~v!52ec̄cosh@c̃~v!#. ~7!

In the above, c̄(v)5@c1(v)1c2(v)#/2 and c̃(v)
5@c2(v)2c1(v)#/2.

It should be noted that because of the factora in
c2(v), c2(0)5 ln(a). It should further be noted that the ze-
ros off(v), in Eq. ~6! are zeros of cosh@c̃(v)# only. This is

because any zeros ofec̄ cancel the poles of cosh@c̃(v)#. This,
in turn, can be understood because Eq.~7! is nothing but
2(af1f2)

1/2@$f11af2%/2(af1f2)
1/2#.

Therefore, the zeros off(v) may be obtained by solving

c̃~v!56 i ~1/21k!p[ i I k , ~8!

wherek50,1,2, . . . .
Now, using the cumulant expansion~4! we can write

c̃(v) as

c̃~v!5(
s51

`

g̃s

~ iv!s

s!
1
ln~a!

2
, ~9!

whereg̃s5(gs
(2)2gs

(1))/2.
If g̃15$@d/d( iv)#c̃(v)% iv50Þ0, we can invert

the above series. We first defineĉ(v)5$c̃(v)
2@ ln(a)/2#%/g̃1 .

The local inverse function near the origin can be obtained
in the power series as, using the Lagrange formula@12#,

iv5(
s51

`

bsĉ
s, ~10!

where

bs5
1

s!

ds21

d~ iv!s21 S iv

ĉ~v!
D sU

iv50

. ~11!

It should be noted that, sinceg̃s’s are real, thebs’s are
also real. The first fewbs’s are b151, b252ĝ2 , b3
52ĝ2

22ĝ3 , b4525ĝ2
315ĝ2ĝ32ĝ4 , b5514ĝ2

4 221ĝ2
2ĝ3

13ĝ3
216ĝ2ĝ42ĝ5 , @13# whereĝs 5g̃s /g̃1 /s!.

Therefore, the zeros of the characteristic functionf(v)
can be expressed by

ivk5(
s51

`

bsS i I k2@ ln~a!/2#

g̃1
D s, ~12!

where thebs’s I k are given by~11! and ~8!.
Although the dividing pointx* is arbitrary and thebs’s

should not depend onx* , g̃s’s have little meaning unless the
original probability density function has two separate distri-
butions over two distinct regions andx* is taken at some
point between the two regions.

For a symmetric distribution, it is convenient to shift the
origin to x* so that f (x)5 f (2x). Zeros are unaffected by
the shift since the cumulants are invariant except forg1 @11#
and the zeros depend only ong̃1 , the difference between
g1’s, which is also invariant.

Sincef1(2v)5f2(v), we haveg̃s5gs
(2)2gs

(1)50 for
evens and g̃s5gs

(2)52gs
(1) for odd s in addition toa51.

This makesc̃(v) in Eq. ~9! an odd function ofiv. There-
fore, the function @ iv/ĉ(v)#s on the right hand side
of Eq. ~11! becomes even, making the odd-numbered
derivatives vanish. This makes only the odd-numbered
coefficients b2s11 survive. Thus we have
v5(s50

` (21)sb2s11(ĉ/ i )
2s11.

Finally, by substituting the solution for zeros~8! in the
above, we have

vk5(
s50

`

~21!sb2s11S I k
g̃1

D 2s11

, ~13!

provided that the series converges. Sincebs’s are real,vk’s
are real. We now have shown that the zeros of the charac-
teristic function of a symmetric distribution function lie on
the real axis provided that the series in~12! converges. This
means that in the complexz5e2 iv plane, the Mellin trans-
formationP(z), defined byP(z)5f@2 i ln(z)#, @11# has ze-
ros only on the unit circle.

For some probability distributions it is possible to calcu-
late zeros explicitly. For example, the zeros of the character-
istic function for the uniform distribution, i.e.,
f (x)51/(b2a) on @a,b# and f (x)50 elsewhere, are
vk5(2pk)/(b2a), wherek561,62, . . . . If thedensity
function of the Gaussian distribution isf (x)5exp@2(x
2m)2/(2s2)]/A2ps, the cumulant generating function is
given byc(v)5m( iv)11/2s2( iv)2 @11#. Since the expo-
nential function of an arbitrary entire function cannot have
zeros in the finite region@12# andc(v) in the above is an
entire function,f(v)5ec(v) cannot have zeros in the finite
region.

On the other hand, if the density function of a double
Gaussian peak is given by f (x)5exp@2(x2m1)

2/
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(2s1
2)]/A2ps11a exp@2(x2m2)

2/(2s2
2)#/A2ps2 , the cu-

mulant generating functions for the two peaks are given
by c1(v)5m1( iv)11/2s1

2( iv)2 and c2(v)5 ln(a)
1m2( iv)11/2s2

2( iv)2, respectively. Therefore, c̃(v)
5 ln(a)/21m( iv)11/2s̃ 2( iv)2, where m5(m22m1)/2
and s̃ 25(s2

22s1
2)/2. By solving Eq.~8! using the above

c̃(v) we obtain zeros as

vk5lk /us̃u1 i ~m2us̃I k /lku!/s̃ 2, ~14!

where

lk56F H S m2

2s̃ 2 2
ln~a!

2 D 21I k
2J 1/22S m2

2s̃ 2 2
ln~a!

2 D G1/2.
In the asymptotic limit wherea→1 ands̃→0, the zeros

are given by vk5I k /m/(12eks̃
2/m)1 i ek , where ek

5 ln(a)/2m21/2s̃ 2I k
2/m3. If we put a51 and s̃50 in the

above, then we haveek50, which makes thevk’s real. This
is an explicit example of the unit circle theorem shown by
Eq. ~13!.

The above mathematical results can be readily applied to
the theory of the phase transition. Let us return to the ex-
ample considered in the beginning of the paper. Since the
cumulants off (x) of Eq. ~2! are related to the derivatives of
the free energy, Eq.~12! implies that the zeros of the parti-
tion function can be expressed in terms of the discontinuities
in the derivatives of the free energy, provided that the first-
order derivative has a nonvanishing discontinuity. Iff (x) is a
symmetric function, then Eq.~13! indicates that the zeros of
the partition function lie on the unit circle in the complex
et plane. Thus we have extended the Lee-Yang unit circle
theorem to the continuum case.

From the general principle of statistical mechanics,f (x)
of ~2! can be approximated by a Gaussian distribution@14#.
Let N be some integer representing an extensive thermody-
namic quantity, say, the number of particles of the system.
Let us introduce the reduced internal energyu5b0U/N and
the reduced specific heatc5Cv /Nkb . Then by redefining
x→x/N, the mean and the variance of the Gaussian form
becomem5u and s5Ac/N. Here,b0 is the inverse tem-
perature of a single phase. In this case, the partition function
cannot have zeros as long asf (x) maintains the Gaussian
shape even if the system is finite so thats remains finite.

On the other hand, if the system undergoes a first-order
transition atb05bc , then f (x) is characterized by a double
Gaussian peak@7,8# separated by the discontinuity of the
internal energy, or the latent heat in the thermodynamic
limit. Let us further assume that the ratio of the weight of the
two peaks isa and that there is also a discontinuity inc,
Dc. Let us designate the reduced latent heatDu[u22u1
by l . Then Eq.~14! now indicates that zeros of the partition
function for small values of k may be written as
ln(rk)5Re(tk)52 ln(a)/Nl11/2(Dc/ l )(qk / l )

2 and uk
5Im(tk) 5(qk / l )$111/2(Dc/ l )ln(a)/Nl21/2(Dc/ l )2(qk /
l )2%. Here we have useds̃ 25DcN/2, m5 lN/2, and
qk5(112k)p/N, with k50,61,62, . . . . We seethat the
dominant finite-size correction is the term dependent on the
asymmetric factora.

In the thermodynamic limit whereN→`, a dependent
terms vanish, and the equation for the locus of zeros be-
comes

r5e~Dc/2l !u2, ~15!

wherer k anduk are replaced by the continuous variablesr
andu. In Fig. 1, we plotu as a functionT/Tc and zeros in
the complext andetplanes.l51.0 andDc560.2,0 are used
in all three figures and the exact zeros given by Eq.~14! are
calculated usingN520 anda51.

The angular density of zeros defined byNg(u)
51/(uk112uk) can be written for small values ofk, as

2pg~u!5 l $11 3
2 ~Dc/ l !2u2%. ~16!

FIG. 1. ~a! u as a function ofT/Tc51/(12t). u150.7 and
c151.0 are taken arbitrarily.~b! Zeros in the complext plane given
by Eq.~14!. ForDc.0, the line of zeros arches toward the positive
real axis. Only zeros between the two dashed lines appear in the
first Riemann sheet in the complexet plane.~c! Zeros in the com-
plex et plane. The solid lines are the loci of the zeros in the ther-
modynamic limit given by~15!. For Dc.0, the locus lies outside
the unit circle, which corresponds to the symmetric case,Dc50.
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If the transition is symmetric (Dc50), the locus of zeros
becomes the unit circle with the uniform density
2pg(u)5 l . One should note that the equation for the locus
of zeros is valid only near the real axis. This is because terms
beyond the Gaussian approximation become important as the
argumentu grows, i.e., for large values ofk, as we have
shown with an example in Ref.@6#. Finally, it should be
remarked that the number of zeros in this example is infinite
in the complext plane @Fig. 1~b!#. However, only a finite
number of zeros closes the circle in the complexz5et for a
finite system if we consider only the first Riemann sheet. In
fact, for the symmetric case whereDc50, there are exactly
N zeros distributed uniformly on the unit circle if we scale
the energy of the system byl , so thatl51.0.

For finite-size systems a Gaussian approximation is not
sufficient. Although we do not have zeros in a closed form,
we can calculate them from Eq.~12! by including higher-
order terms withs.2. For periodic boundary conditions, the
discontinuity in the third-order derivatives of the free energy
is proportional toN21 and one in the fourth orderN22, etc.,
as we have shown in Ref.@6#. These are the predominant
finite-size corrections to the Gaussian approximation apart
from the unequal weight factor, ln(a)/2. For nonperiodic
boundary conditions, the finite-size corrections will include
surface terms proportional toN21/3 in addition to the bulk
terms in the free energy and their derivatives@15#. The de-
tails will be published in a separate paper.

In conclusion, we have shown that the scenario for the
first-order phase transition put forward by Yang and Lee@2#

is valid in a continuum system. Because we have shown a
formal relation between the discontinuities in the derivatives
of the free energy and the distribution of zeros of the parti-
tion function, it can now be applied to any type of first-order
phase transition. The results obtained in this paper include
the discrete system considered in Ref.@6# as a special case.
In this case we merely write the density function as a sum of
weightedd peaks asf (x)5(k50

N pkd(x2k). The character-
istic function is anNth-order polynomialf(z)5(k50

N pkz
k,

where we replacedv by z asz5eiv.
It can also be extended to a multiphase coexistence point.

In this case, one only needs to consider the multidimensional
complex space, as we have done in Ref.@6#. The existence of
the formal relation presented in this paper was suspected by
the original proponents of the theorem, Lee and Yang them-
selves. In their 1952 paper@2#, they expressed their senti-
ment in the concluding remark by saying, ‘‘ . . . distribution
~of zeros! should exhibit such simple regularities . . . . One
can not escape the feeling that there is a very simple basis
underlying the theorem, with much wider application, which
still has to be discovered.’’ We believe we have discovered
this simple basis.
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